The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blow up Dynamic and Upper Bound on the Blow up Rate for critical nonlinear Schrödinger Equation

We consider the critical nonlinear Schrödinger equation iut = −∆u − |u| 4 N u with initial condition u(0, x) = u0 in dimension N . For u0 ∈ H1, local existence in time of solutions on an interval [0, T ) is known, and there exists finite time blow up solutions, that is u0 such that limt→T<+∞ |ux(t)|L2 = +∞. This is the smallest power in the nonlinearity for which blow up occurs, and is critical...

متن کامل

On a Sharp Lower Bound on the Blow-up Rate for the L Critical Nonlinear Schrödinger Equation

(1.1) (NLS) { iut = −∆u− |u| 4 N u, (t, x) ∈ [0, T )×R u(0, x) = u0(x), u0 : R → C with u0 ∈ H = H(R ) in dimension N ≥ 1. From a result of Ginibre and Velo [7], (1.1) is locally well-posed inH and thus, for u0 ∈ H, there exists 0 < T ≤ +∞ such that u(t) ∈ C([0, T ), H) and either T = +∞ (we say the solution is global) or T < +∞ and then lim supt↑T |∇u(t)|L2 = +∞ (we say the solution blows up i...

متن کامل

Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation

The generalized Korteweg-de Vries equations are a class of Hamiltonian systems in infinite dimension derived from the KdV equation where the quadratic term is replaced by a higher order power term. These equations have two conservation laws in the energy space H1 (L2 norm and energy). We consider in this paper the critical generalized KdV equation, which corresponds to the smallest power of the...

متن کامل

Blow-up for the 1d Nonlinear Schrödinger Equation with Point Nonlinearity Ii: Supercritical Blow-up Profiles

We consider the 1D nonlinear Schrödinger equation (NLS) with focusing point nonlinearity, (0.1) i∂tψ + ∂ 2 xψ + δ|ψ|p−1ψ = 0, where δ = δ(x) is the delta function supported at the origin. In the L supercritical setting p > 3, we construct self-similar blow-up solutions belonging to the energy space Lx ∩Ḣ x. This is reduced to finding outgoing solutions of a certain stationary profile equation. ...

متن کامل

Existence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation

‎In this paper‎, ‎we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation‎. ‎Moreover‎, ‎the finite-time blow-up of the solution for the equation is investigated by the concavity method‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Mathematics

سال: 2005

ISSN: 0003-486X

DOI: 10.4007/annals.2005.161.157